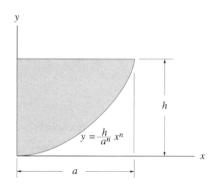
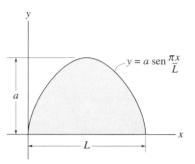

*9.8. Localize o centróide $(\overline{x}, \overline{y})$ da área sombreada.

Problema 9.8

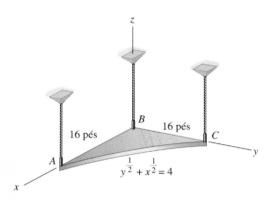
9.9. Localize o centróide da área sombreada.


Problema 9.9

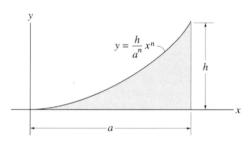
9.10. Localize o centróide \overline{x} da área sombreada.


Problema 9.10

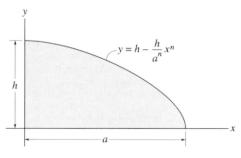
9.11. Localize o centróide \bar{x} da área sombreada.


Problema 9.11

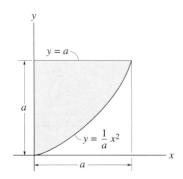
*9.12. Localize o centróide da área sombreada.


Problema 9.12

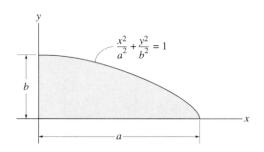
9.13. A placa tem espessura de 0,25 pé e peso específico γ = 180 lb/pé³. Determine a localização de seu centro de gravidade. Encontre também a tração em cada uma das cordas utilizadas para sustentar a placa.


Problema 9.13

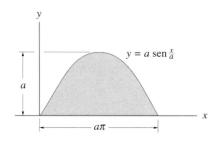
9.14. Localize o centróide \overline{y} da área sombreada.


Problema 9.14

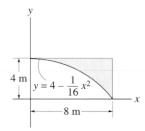
9.15. Localize o centróide da área sombreada.


Problema 9.15

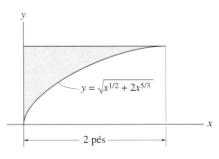
*9.16. Localize o centróide da área sombreada limitada pela parábola e a linha y = a.


Problema 9.16

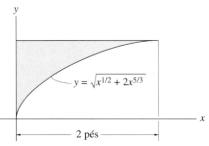
9.17. Localize o centróide da área de um quarto de elipse.


Problema 9.17

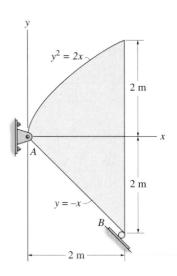
9.18. Localize o centróide $(\overline{x}, \overline{y})$ da área sombreada.


Problema 9.18

9.19. Localize o centróide da área sombreada.

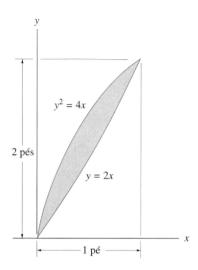

Problema 9.19

***=9.20.** Localize o centróide \overline{x} da área sombreada. Resolva o problema calculando as integrais por meio da regra de Simpson.

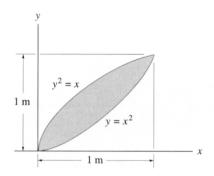

Problema 9.20

9.21. Localize o centróide \overline{y} da área sombreada. Resolva o problema calculando as integrais por meio da regra de Simpson.

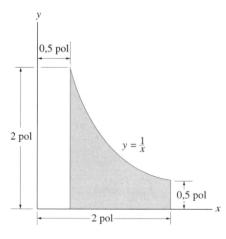
Problema 9.21


9.22. A placa de aço tem 0,3 m de espessura e densidade de 7.850 kg/m³. Determine a localização de seu centro de massa. Calcule também as reações nos apoios pino e rolete.

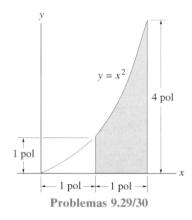
Problema 9.22


9.23. Localize o centróide \overline{x} da área sombreada.

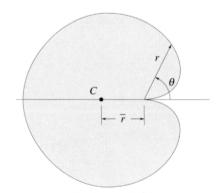
*9.24. Localize o centróide \overline{y} da área sombreada.


Problemas 9.23/24

- **9.25.** Localize o centróide \overline{x} da área sombreada.
- **9.26.** Localize o centróide \overline{y} da área sombreada.

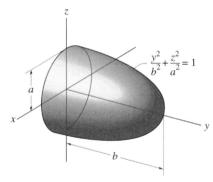

Problemas 9.25/26

- **9.27.** Localize o centróide \overline{x} da área sombreada.
- ***9.28.** Localize o centróide \overline{y} da área sombreada.

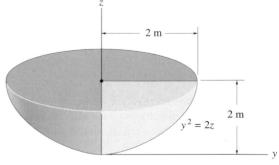


Problemas 9.27/28

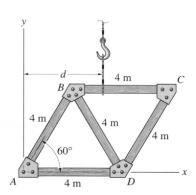
- **9.29.** Localize o centróide \overline{x} da área sombreada.
- **9.30.** Localize o centróide \overline{y} da área sombreada.



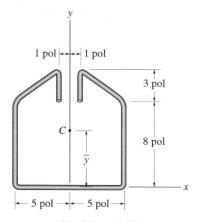
9.31. Determine a localização \bar{r} do centróide C do cardióide, $r = a(1 - \cos \theta)$.


Problema 9.31

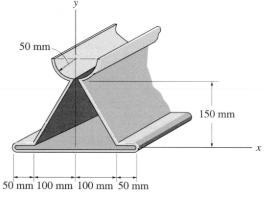
*9.32. Localize o centróide do elipsóide de revolução.


Problema 9.32

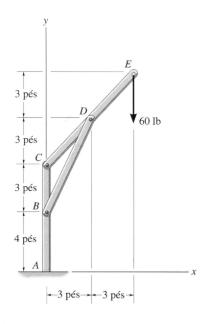
9.33. Localize o centro de gravidade do volume. O material é homogêneo.


Problema 9.33

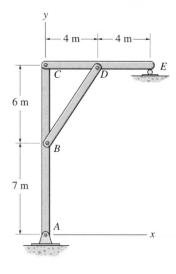
*9.48. A treliça mostrada é feita de cinco elementos, cada um com comprimento de 4 m e massa por unidade de comprimento de 7 kg/m. Considerando as massas das placas de reforço nas juntas e as espessuras dos elementos como desprezíveis, determine a distância d até onde o cabo para elevação deve ser colocado, de forma que a treliça não se incline (gire) quando içada.


Problema 9.48

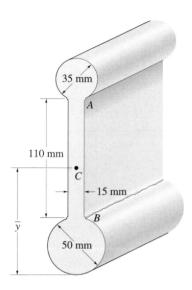
9.49. Localize o centróide para o fio dobrado. Despreze a espessura e pequenas deformações nas quinas do material.


Problema 9.49

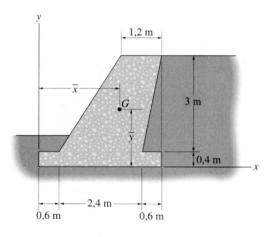
9.50. Localize o centróide $(\overline{x}, \overline{y})$ da seção transversal do metal. Despreze a espessura e pequenas deformações nas quinas do material.


Problema 9.50

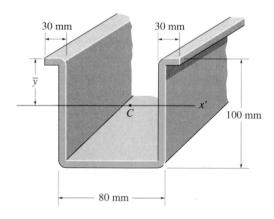
9.51. Os três elementos da estrutura têm peso por unidade de comprimento de 4 lb/pé cada um. Localize a posição $(\overline{x}, \overline{y})$ do centro de gravidade da estrutura. Despreze as dimensões dos pinos nas juntas e a espessura dos elementos. Calcule também as reações no apoio fixo A.


Problema 9.51

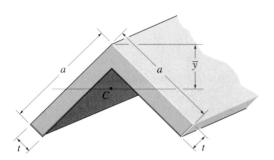
*9.52. Cada um dos três elementos da estrutura tem massa por unidade de comprimento de 6 kg/m. Localize a posição $(\overline{x}, \overline{y})$ do centro de gravidade. Despreze as dimensões dos pinos nas juntas e a espessura dos elementos. Calcule também as reações no pino A e no rolete E.


Problema 9.52

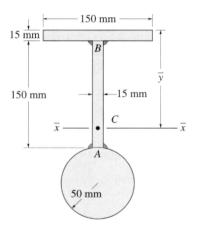
9.53. Determine a localização \overline{y} do centróide da área da seção reta da viga. Despreze as dimensões das soldas das quinas em A e B para esses cálculos.


Problema 9.53

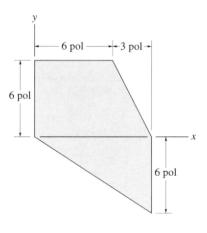
9.54. A barragem de gravidade é feita de concreto. Determine a localização $(\overline{x}, \overline{y})$ do centro de gravidade G para a parede.


Problema 9.54

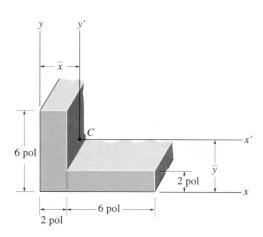
9.55. Um pontalete de alumínio tem seção transversal conhecida como chapéu fundo. Localize o centróide \overline{y} de sua área. Cada parte constituinte tem espessura de 10 mm.


Problema 9.55

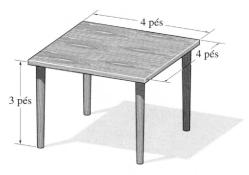
***9.56.** Localize o centróide \overline{y} para a área da seção reta do perfil em ângulo.


Problema 9.56

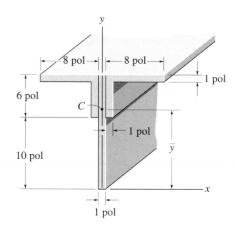
9.57. Determine a localização \overline{y} do eixo \overline{x} \overline{x} do centróide da área da seção transversal da viga. Despreze as dimensões das soldas nas quinas em A e B para esses cálculos.


Problema 9.57

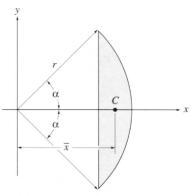
9.58. Determine a localização $(\overline{x}, \overline{y})$ do centróide C da área da figura.


Problema 9.58

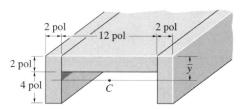
9.59. Localize o centróide $(\overline{x}, \overline{y})$ para a área da seção reta do perfil em ângulo.


Problema 9.59

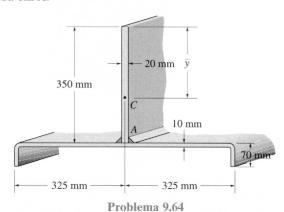
*9.60. A mesa de madeira é feita de uma tábua quadrada que tem peso de 15 lb. Cada uma das pernas pesa 2 lb e tem 3 pés de comprimento. Determine a que distância do solo está seu centro de gravidade. Qual é o ângulo, medido em relação à horizontal, em que o tampo da mesa pode ser inclinado sobre duas de suas pernas antes que ela tombe? Despreze a espessura de cada perna.


Problema 9.60

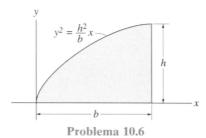
9.61. Localize o centróide \overline{y} da área da seção reta da viga.


Problema 9.61

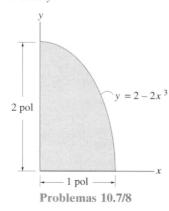
9.62. Determine a localização \overline{x} do centróide C da área sombreada, que é parte de um círculo com raio r.


Problema 9.62

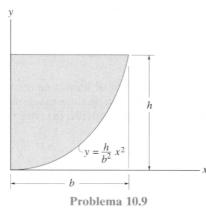
9.63. Localize o centróide \overline{y} da área de seção reta do perfil.

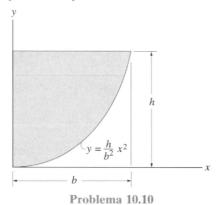

Problema 9.63

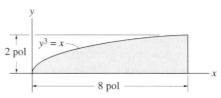
*9.64. Localize o centróide \overline{y} da área da seção transversal da viga construída com um perfil e uma chapa. Suponha que todas as quinas sejam quadradas e despreze a dimensão da solda em A.



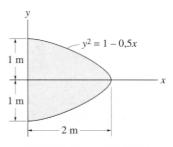
9.65. Localize o centróide $(\overline{x}, \overline{y})$ da área de seção reta do elemento.



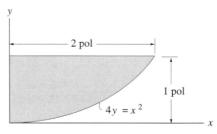

- **10.7.** Determine o momento de inércia da área sombreada em relação ao eixo x.
- *10.8. Determine o momento de inércia da área sombreada em relação ao eixo y.


10.9. Determine o momento de inércia da área sombreada em relação ao eixo x.

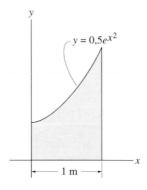
10.10. Determine o momento de inércia da área sombreada em relação ao eixo *y*.



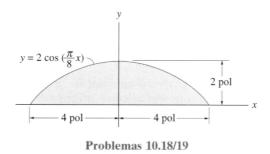
10.11. Determine o momento de inércia da área sombreada em relação ao eixo x.


Problema 10.11

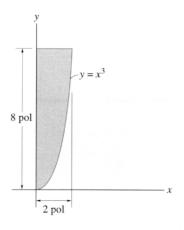
- *10.12. Determine o momento de inércia da área sombreada em relação ao eixo x.
- **10.13.** Determine o momento de inércia da área sombreada em relação ao eixo y.


Problemas 10.12/13

- **10.14.** Determine o momento de inércia da área sombreada em relação ao eixo x.
- **10.15.** Determine o momento de inércia da área sombreada em relação ao eixo *y*.

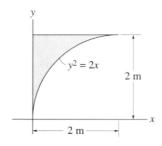

Problemas 10.14/15

- *■10.16. Determine o momento de inércia da área em relação ao eixo y. Utilize a regra de Simpson para calcular a integral.
- *■10.17. Determine o momento de inércia da área em relação ao eixo x. Utilize a regra de Simpson para calcular a integral.

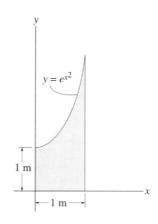


Problemas 10.16/17

- 10.18. Determine o momento de inércia da área sombreada em relação ao eixo x.
- 10.19. Determine o momento de inércia da área sombreada em relação ao eixo y.



- *10.20. Determine o momento de inércia da área sombreada em relação ao eixo x.
- **10.21.** Determine o momento de inércia da área sombreada em relação ao eixo v.



Problemas 10.20/21

- 10.22. Determine o momento de inércia da área sombreada em relação ao eixo x.
- ■10.23. Determine o momento de inércia da área sombreada em relação ao eixo y. Utilize a regra de Simpson para calcular a integral.
- *10.24. Determine o momento de inércia da área sombreada em relação ao eixo x. Utilize a regra de Simpson para avaliar a integral.

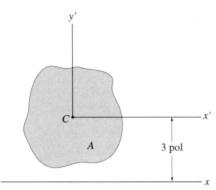
Problema 10.22

Problemas 10.23/24

MOMENTOS DE INÉRCIA DE ÁREAS COMPOSTAS 10.5

Uma área composta é constituída por uma série de outras áreas ou formas geométricas 'mais simples', como semicírculos, retângulos e triângulos. Desde que o momento de inércia de cada uma dessas partes seja conhecido ou possa ser determinado em relação a um eixo comum, então o momento de inércia da área composta é igual à soma algébrica dos momentos de inércia de todas as partes que a compõem.

Os elementos estruturais têm seções transversais de formas variadas e é necessário calcular seus momentos de inércia para determinar as tensões sobre eles.

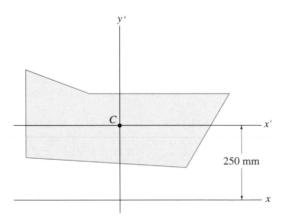

$$I_y = \overline{I}_{y'} + Ad_x^2 = \frac{1}{12}(300)(100)^3 + (100)(300)(250)^2$$

= 1,90(10⁹) mm⁴

Somatórios. Os momentos de inércia para toda a seção reta são, dessa forma:

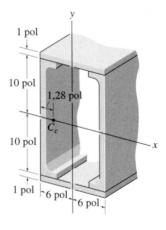
$$I_x = 1,425(10^9) + 0,05(10^9) + 1,425(10^9)$$

= 2,90(10⁹) mm⁴ Resposta
 $I_y = 1,90(10^9) + 1,80(10^9) + 1,90(10^9)$
= 5,60(10⁹) mm⁴ Resposta

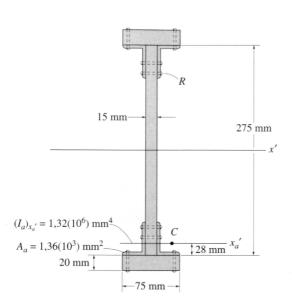

PROBLEMAS

10.25. O momento polar de inércia da área é $\bar{J}_C = 23 \text{ pol}^4$ em relação ao eixo z que passa pelo centróide C. Sendo o momento de inércia em relação ao eixo y' igual a 5 pol⁴ e em relação ao eixo x igual a 40 pol⁴, determine a área A.

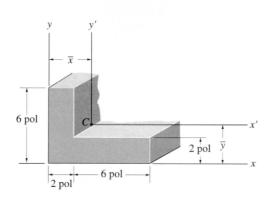
Problema 10.25


10.26. O momento polar de inércia da área é $\bar{J}_C = 548(10^6)$ mm⁴, em relação ao eixo z' que passa pelo do centróide C. O momento de inércia em relação ao eixo y' é $383(10^6)$ mm⁴ e em relação ao eixo x é $856(10^6)$ mm⁴. Determine a área A.

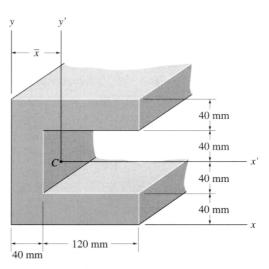
Problema 10.26


10.27. A viga é construída a partir de dois perfis U e duas chapas de cobertura. Se cada perfil tem área de seção reta igual a $A_c=11.8~{\rm pol}^2$ e momento de inércia em relação ao eixo horizontal que passa pelo próprio centróide, C_c , igual a $(\overline{I}_{\bar{x}})_{C_c}=349~{\rm pol}^4$, determine o momento de inércia da viga em relação ao eixo y.

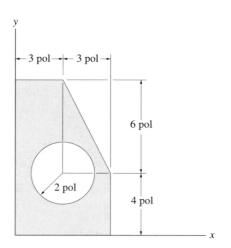
*10.28. Se cada perfil do problema anterior tem momento de inércia em relação ao eixo vertical que passa pelo próprio centróide, C_c , igual a $(\bar{I}_{\bar{y}})_{C_c} = 9,23 \text{ pol}^4$, determine o momento de inércia da viga em relação ao eixo y.


Problemas 10.27/28

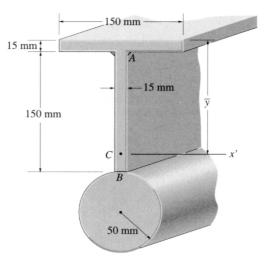
10.29. Determine o momento de inércia da área de seção reta da viga em relação ao eixo x' que passa pelo centróide. Despreze as dimensões de todas as cabeças dos rebites R para os cálculos. O valores padronizados para área, momento de inércia e localização do centróide de uma das cantoneiras são indicados na figura.


Problema 10.29

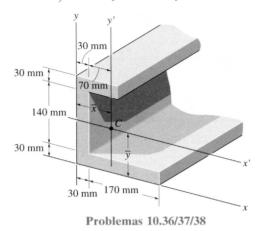
- **10.30.** Localize o centróide \overline{y} da seção reta para o perfil em ângulo. Em seguida, encontre o momento de inércia $\bar{I}_{x'}$ em relação ao eixo x' que passa pelo centróide.
- **10.31.** Localize o centróide \bar{x} da seção reta para o perfil em ângulo. Em seguida, encontre o momento de inércia $\overline{I}_{v'}$ em relação ao eixo y' que passa pelo centróide.

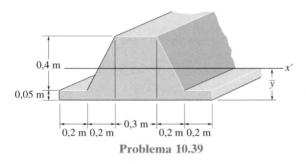


Problemas 10.30/31

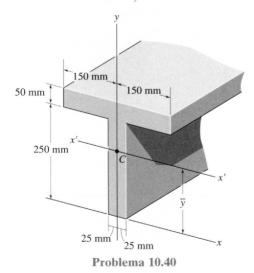

- *10.32. Determine a distância \bar{x} do centróide da seção reta da área da viga e encontre seu momento de inércia em relação ao eixo y'.
- 10.33. Determine o momento de inércia da área da seção transversal da viga em relação ao eixo x'.
- 10.34. Determine os momentos de inércia da área sombreada em relação aos eixos x e y.
- 10.35. Determine o momento de inércia da área da seção transversal da viga em relação ao eixo x'. Despreze as dimensões das soldas nos cantos em A e B para esses cálculos e considere $\overline{y} = 154,4 \text{ mm}$.

Problemas 10.32/33

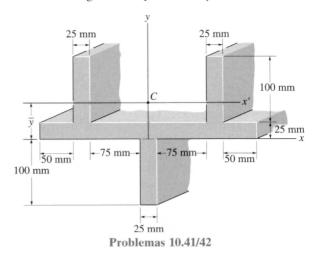

Problema 10.34


Problema 10.35

*10.36. Calcule os momentos de inércia I_x e I_y para a área da seção transversal da viga em relação aos eixos x e y.


- 10.37. Determine a distância \bar{y} para o centróide C da área da seção transversal da viga e, em seguida, calcule o momento de inércia $\overline{I}_{x'}$ em relação ao eixo x'.
- **10.38.** Determine a distância \bar{x} para o centróide C da área da seção transversal da viga e, em seguida, calcule o momento de inércia $\overline{I}_{y'}$ em relação ao eixo y'.

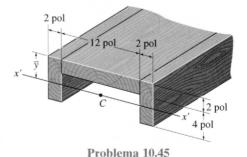
10.39. Localize o centróide \overline{y} da seção transversal e determine o momento de inércia dessa seção em relação ao eixo x'.



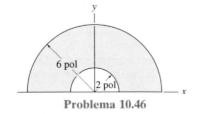
*10.40. Determine \overline{y} que localiza o eixo x' que passa pelo centróide da área de seção transversal da viga T, e encontre os momentos de inércia $\overline{I}_{x'}$ e $\overline{I}_{y'}$.

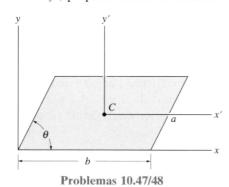
10.41. Determine a distância \overline{y} para o centróide da área da seção transversal da viga; em seguida, determine o momento de inércia em relação ao eixo x'.

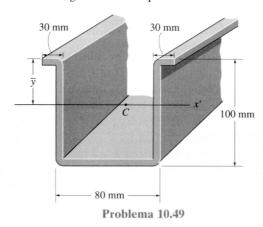
10.42. Determine o momento de inércia da área da seção transversal da viga em relação ao eixo y.

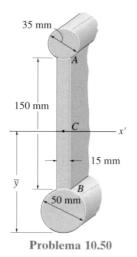


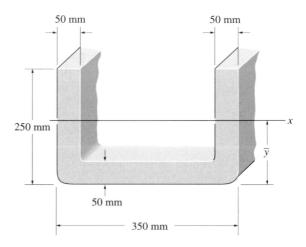
10.43. Determine o momento de inércia I_x da área sombreada em relação ao eixo x.

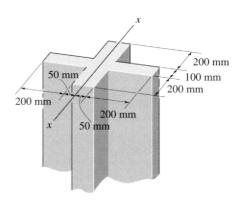

*10.44. Determine o momento de inércia I_v da área sombreada em relação ao eixo y.


10.45. Localize o centróide \bar{y} da área da seção transversal do perfil na figura e determine o momento de inércia em relação ao eixo x' que passa pelo centróide.

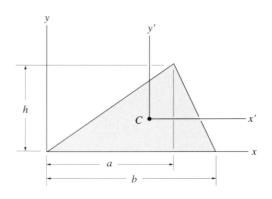

10.46. Determine os momentos de inércia I_x e I_y da área sombreada.


- **10.47.** Determine o momento de inércia do paralelogramo em relação ao eixo x', que passa através do centróide C da área.
- *10.48. Determine o momento de inércia do paralelogramo em relação ao eixo y', que passa através do centróide C da área.


10-49. Um pontalete de alumínio tem uma seção reta denominada chapéu profundo. Determine a posição \overline{y} do centróide de sua área e o momento de inércia da área em relação ao eixo x'. Cada segmento tem espessura de 10 mm.


10.50. Determine o momento de inércia da área de seção transversal da viga em relação ao eixo x' que passa pelo centróide C da seção reta. Despreze as dimensões dos cantos de soldas em A e B para esses cálculos; considere que $\overline{y} = 104,3$ mm.

- **10.51.** Determine a localização \overline{y} do centróide da área de seção transversal do perfil e depois calcule o momento de inércia da área em relação a esse eixo.
- *10.52. Determine o raio de giração k_x para a área de seção transversal da coluna.



Problema 10.51

Problema 10.52

10.53. Determine os momentos de inércia da área triangular em relação aos eixos x' e y', os quais passam pelo centróide C da área.

Problema 10.53